Stacked Generalization: An Introduction to Su- per Learning

نویسندگان

  • Ashley I. Naimi
  • Laura B. Balzer
چکیده

Stacked generalization is an ensemble method that allows researchers to combine several different prediction algorithms into one. Since its introduction in the early 1990s, the method has evolved several times into what is now known as “Super Learner”. Super Learner uses V -fold cross-validation to build the optimal weighted combination of predictions from a library of candidate algorithms. Optimality is defined by a user-specified objective function, such as minimizing mean squared error or maximizing the area under the receiver operating characteristic curve. Although relatively simple in nature, use of the Super Learner by epidemiologists has been hampered by limitations in understanding conceptual and technical details. We work step-by-step through two examples to illustrate concepts and address common concerns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization

Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...

متن کامل

An Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization

Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...

متن کامل

Stacked Generalizations: When Does It Work?

Stacked generalization is a general method of using a high-level model to combine lower-level models to achieve greater predictive accuracy. In this paper we address two crucial issues which have been considered to be a `black art' in classiication tasks ever since the introduction of stacked generalization in 1992 by Wolpert: the type of generalizer that is suitable to derive the higher-level ...

متن کامل

Issues in Stacked Generalization

Stacked generalization is a general method of using a high-level model to combine lowerlevel models to achieve greater predictive accuracy. In this paper we address two crucial issues which have been considered to be a `black art' in classi cation tasks ever since the introduction of stacked generalization in 1992 by Wolpert: the type of generalizer that is suitable to derive the higher-level m...

متن کامل

Stacked generalization

This paper introduces stacked generalization, a scheme for minimizing the generalization error rate of one or more generalizers. Stacked generalization works by deducing the biases of the generalizer(s) with respect to a provided learning set. This deduction proceeds by generalizing in a second space whose inputs are (for example) the guesses of the original generalizers when taught with part o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017